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Abstract

An advantage of using level set methods for moving boundary problems is that geometric quantities such as curvature
can be readily calculated from the level set function. However, in topologically challenging cases (e.g., when two interfaces
are in close contact), level set functions develop singularities that yield inaccurate curvatures when using traditional dis-
cretizations. In this note, we give an improved discretization of curvature for use near level set singularities. Where level
set irregularities are detected, we use a local polynomial approximation of the interface to construct the level set function
on a local subgrid, where we can accurately calculate the curvature using the standard 9-point discretization. We demon-
strate that this new algorithm is capable of calculating the curvature accurately in a variety of situations where the tradi-
tional algorithm fails and provide numerical evidence that the method is second-order accurate. Examples are drawn from
modified Hele-Shaw flows and a model of solid tumor growth.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many important physical problems involve the motion of free boundaries or interfaces with velocities
dependent upon curvature. For instance, in Hele-Shaw multiphase flows, tumor growth, and crystal growth,
the motion of interfaces depends nonlocally upon the derivatives of curvature. Therefore, the stable and accu-
rate computation of curvature is paramount when simulating such systems. This is particularly important in
regions where interfaces are in near contact.

Level set methods have been used with good success to implicitly track moving interfaces and automatically
detect topology changes in these problems [8-10,12,13]. However, level set functions develop discontinuities in
their derivatives near regions of topological change, making the curvature discretization problematic. In [6,7],
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it was demonstrated that if the curvature is computed without regard for the local geometry by using standard
centered difference algorithms as proposed in [8-10,12,13], then the curvature becomes oscillatory and inac-
curate for interfaces in near contact. This may lead to sudden spikes in the curvature error. Refining the mesh
near topology changes may delay the onset of these problems but cannot eliminate them. For example, we
show a case in which mesh refinement delays the formation of spikes but actually increases the spike magni-
tude. In our example, this can lead to the blow-up of the solution when using a traditional curvature discret-
ization. Furthermore, due to computational cost, mesh refinement cannot be continued indefinitely as the
distance between interfaces approaches zero.

In [6,7], a complicated curvature discretization was given that addressed the accurate approximation of cur-
vature in complex 2D geometries in the context of a nonlinear model of tumor growth. In this paper, we
introduce a simpler and more robust geometry-aware curvature discretization that can be extended to 3
dimensions. We calculate the curvature using standard level set methods when the level set function is suffi-
ciently smooth. Otherwise, our method works by first constructing a properly-oriented (least squares, qua-
dratic) polynomial approximation of the interface through a point. With this curve, we create a local level
set function with which to compute the curvature by a standard discretization on a local subgrid.

In our work, we have found that using a local level set function is more robust in calculating the curvature
than directly differentiating an interpolating spline [6,7]. Alternative methods of representing the curve (e.g., B-
splines; see [1,4,11]) can be used together with our method, but we find that quadratic least squares polynomial
approximations are easy to implement and sufficient for second-order accuracy.

Our method calculates the curvature accurately in a variety of difficult topological situations (e.g., merging
interfaces, drop fragmentation), as we demonstrate in examples of modified Hele-Shaw multiphase flow and
in vivo tumor growth. In the Hele-Shaw example, we present numerical evidence of second-order convergence.
Furthermore, we also demonstrate that in this example, the traditional curvature discretization fails in a way
that is worsened by decreasing the mesh size. Our method is generally applicable to any level set model involv-
ing morphological changes or interfaces in near contact, e.g., multiphase flows (e.g., [13]), dendritic crystal
growth (e.g., [3]), and image processing (e.g., [8,12]).

2. Overview

Traditional level set methods (e.g., [8-10,12,13]) compute curvature as

. (Ve _ uP) — 20:0,0 + 9,01 0
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where ¢ is an approximation of the signed distance function to the interface I'. On a Cartesian grid, this
divergence is generally calculated at node points by using a 9-point stencil with centered differences for all
the partial derivatives.

Suppose we have a level set function ¢ defined on a Cartesian grid with mesh points given by
X xY= {x,v}?il X {yj}j.\':1 and we require the curvature x(x,y) at an interior point (x, ) € [X;, X;+1) X [V}, Yj+1)-
If the level set function is sufficiently smooth to compute the curvature x(xg, y,) at each mesh point
(s v0) € {2 x {152 ;1> then we can accurately compute x(x, y) by calculating the curvature at these
16 mesh points (with the 9-point stencil) and using bicubic interpolation.! If the level set function is only suf-
ficiently smooth to compute the curvature x(xy, y,) at each of the four mesh points (x, y,) € {x;, x;11} X
{¥» ¥j+1}, then we proceed with bilinear interpolation instead. It often occurs that the level set function is
insufficiently smooth to allow even a bilinear interpolation. (See Section 3 for a measure of smoothness.) When
two interfaces are in close contact (generally 5-7 nodes apart or less), the derivatives of ¢ become inaccurate
and develop discontinuities in the region between the interfaces. Our method provides a means to deal with
this situation accurately.

We first detect regions where the traditional curvature discretization fails. In these regions, we find a least
squares quadratic, properly-oriented curve y(s) approximating the interface I" near the point (x, y) where we

! In our testing, this gives a second-order accurate curvature [6,7].
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desire the curvature. We have found that directly differentiating y to obtain the curvature is not robust, as y is
sensitive to errors in the parameterization. Instead, we construct a local level set function ¢ about (x, y) and
use the standard 9-point stencil on a locally refined subgrid to discretize the curvature.

3. Detecting regions where the traditional curvature fails

In [6,7], we found that if we defined a level set quality function by
Ox,y) =1 = |Vol| (2)

and set a threshold #, then (x, y) is near a singularity of the level set function ¢ whenever Q(x, y) = #1; we com-
pute Vo using centered finite differences. In our testing, we found that using # = 0.004 reliably identified such
regions without yielding false positives.

Suppose we wish to calculate the curvature at (x;, y;) using the standard 9-point discretization. If QO(x, y) >
natany (x,y) € {x}i | x {x /7|, then the level set function is not smooth enough to accurately discretize
the curvature at (x; y;), and we use our geometry-aware algorithm instead.

4. Approximating the interface with proper orientation

Let (x, y) be contained in the mesh square [x;, x;11) X [y}, ¥+1), With ¢(x, y) = 0. We seek to construct an
accurate approximation y(s) = (x(s), y(s)), where s is arclength, of the interface I' near (x, y) with proper
orientation. Let x3 = (x3, y3) = (x, »), and let s3 = 0 such that y(s; = 0) = x3.

We choose points X, = (x5, ¥») and x4 = (x4, y4) Where the interface I' intersects the mesh immediately sur-
rounding x3. To improve the stability of the approximating curve we seek to construct, we choose these points
to be at least %Ax away from x3z. Similarly, we choose a point x; = (x1, y;) where the mesh surrounding x,
intersects I' and is at least %Ax from x,, and x 5 = (xs, ys) is similarly chosen to be close to x4. See Fig. 1.

We choose the ordering (xy, X,, X3, X4, Xs) such that when traversing the curve in the direction of increasing
arclength s, the region where ¢ <0 is on the left side of the curve. The orientation of the curve can readily be

determined by examining the cross product of x4 — x3 and y — x3, where y is a point off the curve. See Fig. 2.

Fig. 1. Finding points on I" near Xj.
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Fig. 2. Determining the orientation of (X,, X3, X4): Notice that the z-component of (y — X3) X (X4 — X3) is negative, so y is on the left side of
the curve in this orientation.

We choose arclengths s, 55, s4, and s5 such that y(s;) = x;, for 1 <i<5. We then approximate these
arclengths by using the linear distances between the points. That is, moving backward along the curve from
X3 =17(s3), 53=0, 55 =—|X3 — X;|, and s; =55 — |X5 — Xy|; moving forward, s4=|x4 — X3| and ss=us54+
X5 — X4l-

Finally, let x(s) and y(s) be the least squares quadratic curves fitted to {(s;,x;)}._, and {(s;,»,)},_,, respec-
tively. We reset the constant coefficients such that y(0) = x3 = (x, y). Notice that because 7y(s) is only used to
construct the level set function on a local subgrid, it does not affect the position of the actual contour of the
original level set function. Although we do not show it here, the resulting curve approximates I" very well; this
is reflected in our numerical tests in later sections.

5. Constructing a new local level set and computing the curvature

Lastly, we construct a local level set function near x3 = (x, y). For a fixed § > 0, let X = {x=90,x,x+ 0}
and Y = {y—d,y,y+ 0}, so that X x Y is a 3x 3 grid centered at x3. See Fig. 3. Let ¢ be the local level
set function on X x Y. We can choose any desired mesh size 6 < Ax and 0 < Ay.

For each point X = (X, ;) € X x Y, we set @, equal to the signed distance between X and 7. (The sign is
determined based upon whether X is on the left or right side of the curve.) The end result is a local construction
of ¢ on a refined subgrid that avoids level set smgularltles We compute the curvature x(x,y) using the stan-
dard centered differences for ¢, (pn, Py (p‘y, and @, on the subgrid X x7Y.

We tested with 6 = Ax, 75 Ax, 15 Ax, and 155 Ax. In general, we found that all these values worked equally
well when using a quadratic y(s). This is because the essential feature of our technique is that it removes the
nearby second interface and locally rebuilds the level set function accordingly. However, smaller values tended
to give more accurate results when two interfaces were in extremely close contact (less than one mesh point
apart). In our remaining work, we chose d = i Ax.

6. Numerical examples
6.1. Two drops merging under modified Hele-Shaw flow

Let I' be an interface describing the boundary of two circular drops of radius 1 centered at
(2.5c080,2.5sin0) and (—2.5cosf,—2.5sin0), (3)

respectively, where 0 € [0, 2n) is fixed. Let ¢ be a level set function for I', and let I" evolve with normal velocity
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Fig. 3. The local subgrid near x3, with 6 = %Ax In our tests, we used d = gy Ax.
V=1-n-[Vp] if ¢(x)=0, (4)

where [Vp] is the jump in the pressure gradient from the inside to the outside of the drops. The pressure p
solves

Vp=0 if o(x) <0, (5)
[p] =x if ¢(x) =0, (6)
p=0 if p(x) >0, (7)

where (6) is the Laplace—Young boundary condition, and the surface tension (the coefficient of the curvature)
is non-dimensionalized to 1. The level set function ¢ is updated via

@+ Ve Vo[ =0, (8)

where V., 1s an extension of V off of I'.

Under these equations, both circles expand outward at a constant speed of 1 since p = ILH inside the drops
and p =0 outside the drops. At t = 1.5, the drops merge and thus become non-circular. Consequently, at this
time the curvature is no longer constant along the interface and instead takes large values near the intersec-
tion. The pressure p inside the drops is then no longer constant, steep pressure gradients emerge, and the Hele-
Shaw-like term of the velocity dominates near the intersection of the circles.

To study the convergence behavior of our curvature technique, we solved this example with 8 = 13° on
a computational domain of [—6, 6]x [—6, 6] with Ax = Ay =0.10 (low resolution), Ax = Ay = 0.05 (med-
ium resolution), and Ax = Ay = 0.025 (high resolution) using the level set/ghost fluid method as described
in [7]. In Fig. 4, we show the medium-resolution results (Ax = 0.05), where the interfaces are plotted every
0.75 time units from ¢ =0 to ¢t =2.25, and the arrows indicate the direction of growth. In the left plot, we
show the results when using the traditional 9-point curvature discretization. The singular curvature
between the merging interfaces creates steep and noisy false pressure gradients that prevent the merger
of the drops. This behavior of the traditional algorithm is also seen in the low-resolution study
(Ax =0.10), and at high resolution (Ax = 0.025), the traditional curvature algorithm becomes so inaccu-
rate that the simulation is unable to continue past ¢t = 1.486. This is a non-trivial example where the tra-
ditional curvature discretization was inaccurate and led to incorrect simulation behavior, and decreasing
Ax exacerbated the problem.

On the right side of Fig. 4, we show the same simulation using our geometry-aware curvature discret-
ization at medium resolution. (The high-resolution results are indistinguishable to graphical resolution.)
Level set singularities between the merging interfaces are first detected at z = 1.33, and the discretization
adapts accordingly. The drops merge at approximately 7 = 1.48, very close to the exact time of = 1.50.
Immediately after the merger, sharp cusps form in the interface that are smoothed out due to surface
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Fig. 4. Comparison of methods for merging drops under modified Hele-Shaw flow at medium resolution. Left: Traditional curvature
discretization. Right: Geometry-aware curvature discretization. Times shown: 1 = 0.0, 0.75, 1.5, 2.25.

tension. This demonstrates that our geometry-aware curvature routine is robust and accurate even in situ-
ations involving interfaces with high curvature. Our curvature algorithm also performs well at low and
high resolutions: the drops merge at ¢t =1.47 for the low-resolution study and at ¢t =1.49 for the high-
resolution study, and the drops coalesce in a Hele-Shaw-dominated manner thereafter.

In Fig. 5, we examine the maximum curvature error for the two curvature discretizations. In the left plot,
we show the maximum curvature error for the traditional curvature discretization. At low resolution (dotted
curve), the error for the traditional discretization has a spike at 1 = 1.32. Afterwards, the interface flattens out
in the near-contact regions, the drops fail to merge, and the simulation tends to the wrong solution. Because
the drops flatten rather than merge, the computed curvature is bounded away from the correct value; conse-
quently, the error curve levels off after this initial spike. At medium resolution (dashed curve), the occurrence
of this error spike is delayed until = 1.39, but the magnitude of the spike increases; after the spike, the

10 10

Error
Error

1.3 1.35 1.4 1.45 1.5 1.3 1.35 1.4 1.45 1.5

Fig. 5. Maximum error in curvature before merging under modified Hele-Shaw flow. Left: Traditional curvature discretization. Right:
Geometry-aware curvature discretization. Dotted (Ax = 0.10), dashed (Ax = 0.05), solid (Ax = 0.025).
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medium resolution study behaves similarly to the low-resolution study. At high resolution (solid curve), the
appearance of the error spike is further delayed until 7 = 1.486, but its magnitude grows to ~10’. Refining
the computational mesh delays the occurrence but exacerbates the magnitude of the problems inherent in
the traditional curvature discretization; at high resolution, the error spike is so severe that the simulation is
unable to continue.

In the right plot in Fig. 5, we show the maximum curvature error for our geometry-aware discretization.
The dotted curve gives the error at low resolution, the dashed curve the medium-resolution error, and the solid
curve corresponds to high resolution. Overall, each mesh refinement improves the accuracy of our geometry-
aware curvature discretization, and our geometry-aware method never experiences the large error spikes that
characterize the traditional discretization. In the last several time steps, the interfaces are in very close contact
(under two mesh lengths), making the conditions for accurately calculating the curvature very difficult. Even
for these times, mesh refinement improves the accuracy.

In Fig. 6, we show the order of convergence of our geometry-aware discretization:

log (mflx CITOTAy 0.025)
max  errorac—0.050 - (9)
log (§5%)
Note that we obtain second-order convergence or better for almost all times. The medium-resolution study
first detects level set irregularity at ¢ =1.33, and the high-resolution study detects irregularity starting at
t = 1.44; after our algorithm detects level set irregularity, it begins to use our geometry-aware discretization.
Thus, between ¢ = 1.33 and ¢ = 1.43, the medium-resolution study uses the geometry-aware discretization be-
tween the merging interfaces while the high-resolution study continues to use the traditional 9-point stencil. In
this time interval, the interfaces approach one another, the traditional curvature discretization loses accuracy
for the high-resolution study, and the order of convergence steadily falls. After 1 = 1.43, the high-resolution
simulation begins to use our geometry-aware discretization, and the order of convergence is restored to
second-order or better until # = 1.48, at which time the drops begin to merge.

In the next section, we present examples that demonstrate the behavior of our adaptive curvature algorithm
in the context of solid tumor growth. We shall see that the traditional curvature discretization again becomes
inaccurate, leading to incorrect predictions on the behavior of the tumor growth models. Thus, the shortcom-
ings of the traditional curvature discretization negatively impact the scientific investigation of tumor growth.

6.2. Necrotic in vivo tumor growth

Let ¢ be a level set function whose zero level set denotes the boundary I' of an avascular tumor growing
into a surrounding, non-cancerous tissue. This models the early stage of in vivo growth before angiogenesis
occurs. Let R =max{dist(x, 0):x € I'}, and let Dg = {x:|[x| < R+ 1} be a region containing the tumor and

Order of Convergence
N

P s R R R R RN AR R Ry SRR RN KERRE:

1 . . .
1.3 1.35 1.4 1.45 1.5

Fig. 6. Order of convergence for the geometry-aware curvature for the modified Hele-Shaw problem.
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the non-cancerous tissue immediately surrounding the tumor where there is no blood vasculature. Outside Dg,
the healthy tissue is assumed to have a pre-existing network of blood vessels.

Let ¢ denote the non-dimensionalized nutrient concentration within the tumor and the surrounding tissue.
Outside Dg, the blood vasculature delivers sufficient nutrient that ¢ is constant. Within Dg, the nutrient dif-
fuses and is consumed as it enters the tumor interior. Where the nutrient level drops below a threshold value
N, the tumor cells become necrotic, start to die, and are broken down by enzymes. The proliferating tumor
cells generate an internal (oncotic) pressure p that pushes the tumor boundary outward with normal velocity
V via Darcy’s law. The enzymatic breakdown of necrotic tumor tissue is modeled by a local decrease in the
pressure that slows growth. Cell-to-cell adhesive forces are modeled by a curvature boundary condition on
I'. The non-cancerous tissue in Dy is assumed to be close enough to the tumor to be affected by the pressure
changes within the tumor, and the pressure is assumed to be constant outside of Dg. Accordingly, the nutrient
concentration ¢ satisfies

Vie=c if o(x) <0, (1
[c] =0 if o(x)=0, (1
DVic=0 if ¢(x) >0 and x € Dy, (1
[c] =0 if x € 0D, (1
c=1 if x ¢ D, (1

W N =
—_— — — ~— T

the oncotic pressure p is governed by

Vp=G-Gy if ¢(x)<0andc <N, (15)
V’p=—Ge if o(x)<0andc > N, (16)
[Pl =x if p(x) =0, (17)
uV?p =0 if ¢(x) >0 and x € Dy, (18)
[Pl =0 if X € ODg, (19)
p=0 if x¢& Dp, (20)
and the normal velocity of the tumor boundary is given by Darcy’s law:
V=-n-Vp if o(x)=0. (21)

Here, Vp is computed on the interior side of the tumor, G is a parameter that relates to the relative prolifer-
ation rate of the tumor cells, Gy is a parameter that governs the rate of tumor cell breakdown in necrotic re-
gions, D is the nutrient diffusivity in healthy tissue, and p is the cellular mobility in healthy tissue. This tumor
growth model is an extension of current models given in [2,6,7,15] and will be further investigated in a future
work [5]. See [14] for a different approach using diffuse interface modeling.

In Fig. 7, we solve this system with a random initial shape, Ax = Ay =0.08, G =20.0, Gy =1.0, D =1.0,
u=1.0 and N =0.35. In the left column, we solve using the traditional curvature discretization, and in the
right column, we use our new geometry-aware discretization. Time increases from top to bottom in 0.2 incre-
ments from ¢t =0 to = 0.6. In the simulations, widespread fragmentation of the tumor occurs, and the
remaining small tumor nodules move away from one another. The fragmentation is due to the combined
effects of the diffusing nutrient concentration, selective proliferation in the high-nutrient regions (the nutrient
is highest on 0Dpg), and the variable pressure outside the tumor. This will be explored at length in a forthcom-
ing paper [5].

Notice that significant tumor fragmentation occurs for both curvature discretizations, but the discretiza-
tions yield significantly different results on the times of fragmentation; the shape, size, and location of frag-
ments; and whether or not the fragments contain necrotic regions. This is important in the study of
malignant tumors, where the fragmentation of tumor masses may lead to the development of metastases. Fur-
thermore, the location and quantity of necrotic tumor cells has a great impact on the development of blood
vessels in tumors (angiogenesis) [15], and so the failures of the traditional curvature discretization may lead to
erroneous predictions of the morphology and the subsequent vascular development of a tumor.
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Fig. 7. Comparison of methods for necrotic in vivo tumor growth. The left column uses the traditional curvature discretization; the right
column uses our new geometry-aware discretization. Time increases from top to bottom in 0.2 increments from ¢ = 0.0 to # = 0.6. The dark
regions indicate necrotic regions where the tumor cells are dying due to lack of nutrient.
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7. Conclusions

We have developed an improved geometry-aware discretization of curvature for use near level set singular-
ities. In our method, we first detect regions where the traditional curvature discretization fails. Then, we find a
least squares, oriented quadratic polynomial approximation of the interface centered at the point where we
desire the curvature. A local level set function is constructed, and a standard 9-point stencil is used on a local
subgrid to discretize the curvature.

We have demonstrated that for complex geometries (e.g., interfaces in near contact), the traditional curva-
ture discretization produced results that were not improved by mesh refinement, whereas our geometry-aware
algorithm was second-order accurate and robust. Examples were given for modified Hele-Shaw flow and
in vitro tumor growth. In the tumor growth example, it was demonstrated that an accurate and robust cur-
vature discretization is critical for the accurate modeling of the biophysical properties of evolving tumors.
Our method is generally applicable to any level set model involving morphological changes or interfaces in
near contact, e.g., multiphase flows, dendritic crystal growth, and image processing.

Lastly, we note that the geometry-aware curvature discretization developed here can be extended to three
dimensions by finding an approximating surface y(sy, s2) = (x(s1, 52), ¥(81, $2), z(s1, $)) and constructing a
3% 3x 3 local level set function. We also note that this method could be used to improve the accuracy of
normal vector discretizations near level set singularities; this is currently under study.
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